Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139085, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518444

RESUMO

The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.


Assuntos
Antocianinas , Fermentação , Odorantes , Polifenóis , Probióticos , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química , Odorantes/análise , Antocianinas/análise , Antocianinas/metabolismo , Probióticos/metabolismo , Probióticos/análise , Probióticos/química , Aromatizantes/metabolismo , Aromatizantes/química
2.
J Sci Food Agric ; 104(2): 1107-1115, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37736877

RESUMO

BACKGROUND: Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION: These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.


Assuntos
Gansos , Proteínas de Soja , Animais , Emulsões/química , Proteínas de Soja/química , Temperatura , Polissacarídeos/química , Fígado , Água/química
3.
Food Res Int ; 175: 113774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129063

RESUMO

To investigate the mechanism of Penicillium proteases on the hydrolysis of myofibrillar protein (MP) and volatile compound evolutions, enzymatic characteristics of Penicillium proteases, hydrolysis capacities for MP, interactions between Penicillium proteases and MP, and profile changes of volatile compounds were investigated. P. aethiopicum (PA) and P. chrysogenum (PC) proteases showed the largest hydrolysis activities at pH 9.0 and 7.0, and were identified as alkaline serine protease and serine protease by LC-MS/MS, respectively. The proteases of PA and PC significantly degraded myosin and actin, and PA protease showed higher hydrolysis capacity for myosin than that of PC protease, which was confirmed by higher proteolysis index (56.06 %) and lower roughness (3.99 nm) of MP after PA treatment. Molecular docking revealed that hydrogen bond and hydrophobic interaction were the major interaction forces of Penicillium proteases with myosin and actin, and PA protease showed more binding sites with myosin compared with PC protease. The total content of free amino acids increased to 6.02-fold for PA treatment and to 5.51-fold for PC treatment after 4 h hydrolysis of MP, respectively. GC-MS showed that aromatic aldehydes and pyrazines in PA showed the largest increase compared with the control and PC during the hydrolysis of MP. Correlation analysis demonstrated that Phe, Leu and Ile were positively related with the accumulation of benzaldehyde, benzeneacetaldehyde, 2,4-dimethyl benzaldehyde and 2,5-dimethyl pyrazine.


Assuntos
Penicillium , Hidrólise , Penicillium/metabolismo , Benzaldeídos , Actinas , Simulação de Acoplamento Molecular , Cromatografia Líquida , Espectrometria de Massas em Tandem , Serina Proteases/metabolismo , Serina Endopeptidases/metabolismo , Miosinas
4.
Int J Biol Macromol ; 253(Pt 2): 126810, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690654

RESUMO

The appropriateness of animal by-product proteins as emulsifiers is barely explored compared to their meat counterparts. This paper focused on improving interfacial and emulsifying properties of modified goose liver protein using three structurally relevant polyphenols either enhanced by pH shifting (P-catechin, P-quercetin and P-rutin) or not (catechin, quercetin and rutin). Due to its high hydrophobicity and limited steric hindrance, quercetin was more sufficient to hydrophobically interact (ΔH > 0, ΔS > 0) with MGLP than catechin and rutin. Results showed that polyphenol interactive affinity was positively correlated to surface hydrophobicity but negatively to size and aggregation extent of MGLP. Interfacial pressure and dilatational elastic modulus implied that synergistic polyphenol interaction and pH shifting favored the interfacial adsorption and macromolecular association of MGLP, particularly for P-quercetin with the values reached to 19.9 ± 2.0 mN/m and 22.9 ± 1.2 mN/m, respectively. Emulsion stabilized by P-quercetin also maintained highest physical and oxidative stabilities regarding the lowest D [4,3] (3.78 ± 0.27 µm) and creaming index (8.38 ± 0.43 %), together with highest mono- (19.51 %) and polyunsaturated fatty acid content (29.39 %) during storage. Overall, chemical structure of polyphenols may be determining in fabricating MGLP-polyphenol complexes with improved emulsion stabilization efficiency.


Assuntos
Catequina , Quercetina , Animais , Quercetina/química , Emulsões/química , Gansos , Catequina/química , Fenóis , Proteínas , Polifenóis/química , Emulsificantes/química , Rutina/química , Concentração de Íons de Hidrogênio , Carne , Fígado
5.
Carbohydr Polym ; 318: 121143, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479449

RESUMO

This paper reports the development of a hydrogel film with antibacterial activity and controlled release characteristics. Carboxymethyl chitosan (CMCS) is grafted onto durancin GL and inulin via a mediated reaction between N-hydroxysuccinimide and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Rheology tests, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and lap shear tests confirmed the formation of a stable chemical cross-linking and excellent adhesion hydrogel with 4 % CMCS and 8 % inulin. The CMCS/inulin hydrogel film loaded with durancin GL appears transparent and uniform. FTIR spectroscopy results reveal the interaction mode among CMCS, inulin, durancin GL, and the hydrogel film structure. Cross-linking improved thermal stability and water-vapour barrier performance. The hydrophobicity of CMCS/inulin @Durancin GL increased under a durancin GL concentration of 0.036 g/30 mL, and the release of active substances is prolonged. In-vitro antibacterial capacity and salmon preservation experiments show that the addition of durancin GL enhanced the antibacterial activity of the hydrogel film. Therefore, CMCS/inulin@Durancin GL hydrogel films can be used as fresh-keeping packaging materials in practical applications.


Assuntos
Quitosana , Inulina , Antibacterianos/farmacologia , Hidrogéis/farmacologia
6.
J Sci Food Agric ; 103(8): 3915-3925, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36335574

RESUMO

BACKGROUND: The traditional screening method for umami peptide, extracted from porcine bone, was labor-intensive and time-consuming. In this study, the rapid screening method and molecular mechanism of umami peptide was investigated. RESULTS: This article showed that a more precisely rapid screening method with composite machine learning and molecular docking was used to screen the potential umami peptide from porcine bone. As reference, 24 reported umami peptides were predicated by composite machine learning, with the accuracy of 86.7%. In this study, potential umami peptide sequences from porcine bone were screened by UMPred-FRL, Umami-MRNN Demo, and molecular docking was used to provide further screening. Finally, nine peptides were screened and verified as umami peptides by this method: LREY, HEAL, LAKVH, FQKVVA, HVKELE, AEVKKAP, EAVEKPQS, KALSEEL and KKMFETES. The hydrogen bonding was deemed to be the main interaction force with receptor T1R3, and domain binding sites were Ser146, His121 and Glu277. The result demonstrated the feasibility of machine learning assisted T1R1/T1R3 receptor for rapid screening umami peptides. The screening method would not only adapt to screen umami peptides from porcine bone but possibly applied for other sources. It also provided a reference for rapid screening of umami peptides. CONCLUSION: The manuscript lays a rapid screening method in screening umami peptide, and nine umami peptides from porcine bone were screened and identified. © 2022 Society of Chemical Industry.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Suínos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Sítios de Ligação , Ligação de Hidrogênio , Paladar , Animais
7.
Int J Biol Macromol ; 192: 379-388, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619277

RESUMO

Biodegradable and eco-friendly food packaging materials have attracted attention. Novel blending films were prepared with polylactic acid (PLA) and Perilla essential oil (PEsO). The morphological features of the nanofibers were modulated by adjusting process parameters (e.g. PLA solution concentration, applied voltage and ultrasonic power). The optimal spinning concentrations, applied voltages and ultrasonic power of the PLA solutions were set at 15% (m/v), 20 kV and 640 W, respectively. Compared with the PLA films, the addition of PEsO increased the diameter of the nanofibers and solvent resistance and reduced the swelling rate of the PLA/PEsO films. The breakage elongation and the gas barrier properties significantly improved when 2% (w/w) PEsO was used. Fourier infrared spectroscopy, X-ray diffractometer, thermogravimetry and differential scanning were used in analyzing the potential interactions of the film matrices. The PLA/PEsO films had good biocompatibility and antibacterial and antioxidant properties. The PLA/PEsO (1:0.02) film loaded with 2% PEsO extended the shelf life of chilled chicken to 12 days, as indicated by the measured total volatile basic nitrogen (TVB-N), total viable count and pH value. Therefore, PLA/PEsO films have great potential as fresh-keeping packaging.


Assuntos
Antibacterianos/química , Biopolímeros/química , Embalagem de Alimentos , Nanofibras/química , Óleos Voláteis/química , Perilla/química , Poliésteres/química , Animais , Antibacterianos/farmacologia , Fenômenos Químicos , Galinhas , Conservação de Alimentos , Fenômenos Mecânicos , Nanofibras/ultraestrutura , Óleos Voláteis/farmacologia , Permeabilidade , Solventes , Análise Espectral , Vapor
8.
Foods ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34574281

RESUMO

This study evaluated the effect of the combination of ultrasound and phenyllactic acid (PLA) on inactivating Staphylococcus aureus and Salmonella enteritidis biofilm cells and determined the possible antibiofilm mechanism. S. aureus and S. enteritidis biofilm cells were separately treated with ultrasound (US, 270 W), phenyllactic acid (PLA, 0.5% and 1%), and their combination (US + 0.5% PLA, and US + 1% PLA) for 5, 10, 20, 30, and 60 min. Biofilm inactivation, polysaccharide, and respiratory chain dehydrogenase assays were conducted. US and PLA had a synergistic effect on inactivating bacterial cells in S. aureus and S. enteritidis biofilms. The combination of US and PLA significantly decreased the contents of soluble and insoluble polysaccharides and the activity of respiratory chain dehydrogenase in the biofilm cells compared to the single treatment. Confocal laser scanning microscopy, scanning electron microscopy, and intracellular adenosine-triphosphate (ATP) analyses indicated that the combination of US and PLA seriously destroyed the cell membrane integrity of the S. aureus and S. enteritidis biofilms and caused the leakage of intracellular ATP. These findings demonstrated the synergistic antibiofilm effect of US combined with PLA and offered a research basis for its application in the food industry.

9.
Poult Sci ; 99(10): 5127-5136, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988551

RESUMO

The inhibitory and bactericidal activities of thyme oil against the foodborne multiple antibiotics-resistant Enterococcus faecalis biofilm were evaluated in this study. Gas chromatography-mass spectrometry revealed that more than 70% of the composition of thyme oil is thymol. Crystal violet staining assay showed that 128 and 256 µg/mL thyme oil significantly inhibited the biofilm formation of E. faecalis. The cell adherence of E. faecalis, as shown by its swimming and swarming motilities, was reduced by thyme oil. The exopolysaccharide (EPS) quantification assay showed that thyme oil inhibited the EPS synthesis in E. faecalis biofilms. The 3D-view observations through confocal laser scanning and scanning electron microscopy suggested that cell adherence and biofilm thickness were decreased in thyme oil-treated biofilms. Quantitative real-time analyses showed that the transcription of ebp and epa gene clusters, which were related to cell mobility and EPS production, was inhibited by thyme oil. Thus, thyme oil effectively inhibited the biofilm formation of E. faecalis by affecting cell adherence and EPS synthesis. Furthermore, 2,048 and 4,096 µg/mL thyme oil can effectively inactivate E. faecalis population in the mature E. faecalis biofilms by 5.75 and 7.20 log CFU/mL, respectively, after 30 min of treatment. Thus, thyme oil at different concentrations can be used as an effective antibiofilm or germicidal agent to control E. faecalis biofilms.


Assuntos
Biofilmes , Enterococcus faecalis , Doenças Transmitidas por Alimentos , Infecções por Bactérias Gram-Positivas , Óleos Voláteis , Thymus (Planta) , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Galinhas , Enterococcus faecalis/efeitos dos fármacos , Doenças Transmitidas por Alimentos/prevenção & controle , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/prevenção & controle , Óleos Voláteis/farmacologia , Thymus (Planta)/química
10.
Foodborne Pathog Dis ; 17(9): 547-554, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32186920

RESUMO

Some plant essential oils were reported to have antimicrobial activity and have the potential to replace chemical preservatives in food industry. In this study, the antibacterial activity and possible mechanism of Perilla frutescens essential oil (PEO) were evaluated using Enterococcus faecalis R612-Z1 as the target strain. The minimum inhibition concentration of PEO against E. faecalis was 0.5 µL/mL. The PEO solutions at the concentrations higher than minimum inhibition concentration had varying degrees of bactericidal effects against E. faecalis. With the addition of PEO, the cell membrane integrity was destroyed, the cell membrane potential was decreased, and the intracellular adenosine triphosphate loss was increased. By testing the bacterial counts and total volatile basic nitrogen contents in chicken breast meat, PEO can significantly inhibit the growth of E. faecalis. The results showed that PEO can be used as an effective natural food preservative during food storage.


Assuntos
Enterococcus faecalis/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Óleos Voláteis/farmacologia , Perilla frutescens/química , Óleos de Plantas/farmacologia , Animais , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Galinhas , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/ultraestrutura , Armazenamento de Alimentos , Carne/microbiologia , Potenciais da Membrana , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura
11.
Food Res Int ; 127: 108716, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882073

RESUMO

Salmonella spp. is one of the top foodborne pathogens associated with low-moisture foods and they exhibit significant resistance to conventional thermal treatments. UV light pulses emitted from light emitting diode (LED) has shown antimicrobial potential in high-moisture foods and water. However, limited information is available about the antimicrobial potential of UV light with different wavelengths, including 395 nm in low-moisture foods. The objectives of this study were to investigate the antimicrobial potential of 395 nm pulsed LED light in wheat flour and the resulting quality changes. This study demonstrated a maximum 2.91 log reduction of Salmonella cocktail in wheat flour treated with 395 nm pulsed LED for 60 min in a semi-closed system. Oxidation occurred in wheat flour after 30 and 60 min exposure to the 395 nm LED, which subsequently led to bleaching, and polymerization of gluten components through disulphide linkage. The water holding capacity of gluten was reduced by oxidation, and the contents of secondary structures were altered significantly after pulsed LED treatment, but the rheological properties were not deteriorated. The disulfide bond formation naturally happens during dough formation and the oxidation triggered by pulsed LED treatment may play a role on accelerating this process. The 395 nm pulsed LED treatment could be a promising decontamination technology for wheat flour with an additional benefit of bleaching of the flour without chemicals. INDUSTRIAL RELEVANCE: A number of foodborne outbreaks and recalls have been related to low-moisture foods in these decades and recently several outbreaks were reported due to the occurrence of Salmonella in wheat flour. However, it is difficult to solve this problem through conventional thermal approaches because of the increased thermal resistance of Salmonella at low water activity environment. The emerging LED light source can produce light with monochromatic wavelengths without the use of mercury vapor lamps. It also has high durability, low heat generation, and is relatively easy to be adapted in an existing production line. Therefore, there is a great potential of using certain UV wavelengths emitted from LED to disinfect the low-moisture foods in food industries. To the best of our knowledge, no research was conducted on decontamination of wheat flour by using LEDs and only limited studies are available on the influence of pulsed LED treatment on food quality. The aim of this study was to explore the possibility of using 395 nm pulsed LED treatment as a novel tool for decontamination of Salmonella in a low-moisture food product (wheat flour) with industrial feasibility, and investigate the influence of the pulsed LED treatment on quality changes in the product.


Assuntos
Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Glutens/química , Salmonella , Triticum/química , Raios Ultravioleta , Contagem de Colônia Microbiana , Farinha , Microbiologia de Alimentos/métodos
12.
J Agric Food Chem ; 64(25): 5232-40, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27293017

RESUMO

The ability of chicken collagen peptides to inhibit the growth of ice crystals was evaluated and compared to that of fish antifreeze proteins (AFPs). This ice inhibition activity was assessed using a polarized microscope by measuring ice crystal dimensions in a sucrose model system with and without collagen peptides after seven thermal cycles. The system was stabilized at -25 °C and cycled between -16 and -12 °C. Five candidate peptides with ice inhibition activity were identified using liquid chromatography and tandem mass spectrometry and were then synthesized. Their ice inhibition capacity was compared to that of type I AFPs in a 23% sucrose model system. Specific collagen peptides with certain amino acid sequences reduced the extent of ice growth by approximately 70% at a relatively low concentration (1 mg/mL). These results suggest that specific collagen peptides may act in a noncolligative manner, inhibiting ice crystal growth like type I AFPs, but less efficiently.


Assuntos
Proteínas Anticongelantes/química , Colágeno/química , Crioprotetores/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Proteínas Anticongelantes Tipo I/química , Galinhas , Cristalização , Congelamento , Gelo/análise , Espectrometria de Massas , Dados de Sequência Molecular , Sacarose/análise
13.
Food Chem ; 141(1): 289-96, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768360

RESUMO

Sesamol, a nutritional antioxidant phenolic compound present in sesame seed, has a potential therapeutic molecule effect against cancers. In this study, the interaction between sesamol and DNA was investigated by employing ultraviolet/visible (UV/Vis), fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), and molecular modeling. The fluorescence analysis indicated that the fluorescence quenching mechanism of sesamol by calf thymus DNA (ctDNA) occurred through static quenching. The UV/Vis, CD, FT-IR spectra and molecular docking results implied that the primary binding mode was minor groove binding. Furthermore, the intracellular interaction of sesamol with DNA and its bioactivity effect were explored. The cell activity results demonstrated that sesamol induced hepatic cell line (HepG2) death. The acridine orange (AO)/ethidium bromide (EB) staining assay and DNA fragmentation confirmed that sesamol could efficiently induce the apoptosis of HepG2 cells. Moreover, addition of sesamol to HepG2 cells resulted in nuclear localization, as visualized by confocal microscopy.


Assuntos
Apoptose/efeitos dos fármacos , Benzodioxóis/química , Benzodioxóis/toxicidade , Núcleo Celular/metabolismo , DNA/química , Fenóis/química , Fenóis/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Animais , Benzodioxóis/metabolismo , Bovinos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Células Hep G2 , Humanos , Fenóis/metabolismo , Extratos Vegetais/metabolismo
14.
Zhonghua Bing Li Xue Za Zhi ; 35(4): 213-7, 2006 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-16776978

RESUMO

OBJECTIVE: To study the expression of anaplastic lymphoma kinase (ALK) and survivin proteins in anaplastic large cell lymphoma (ALCL) and there clinical significance. METHODS: The morphologic characteristics were studied by routine light microscopy. Immunohistochemical staining for ALK and survivin proteins was performed using LSAB method. RESULTS: ALK protein was positive in 51 cases (63%) and negative in 30 cases (37%) of the 81 cases of ALCL studied. The prognosis of patients with ALK protein expression was better than those without ALK expression (P < 0.05). As for survivin protein, there were various degrees of expression in all the 77 ALCL cases studied. High level of survivin protein expression was observed in 33 cases (42.9%), while low level of expression was seen in 44 cases (57.1%). The expression of survivin protein did not correlate with that of ALK protein (P > 0.05). The survival rate was significantly lower in patients with high survivin protein expression (P < 0.05). In cases with ALK protein expression, the prognosis was less favorable if there was also high co-expression of survivin protein (P < 0.05). In ALK protein negative cases, prognosis did not significantly correlate with the expression of survivin protein (P > 0.05). In addition, multivariate analysis confirmed the prognosis value of ALK protein expression, survivin protein expression and constitutional symptoms. CONCLUSION: Survivin protein expression can serve as an independent prognostic predictor of unfavorable clinical outcome in patients with ALCL, especially when ALK protein is positive.


Assuntos
Linfoma Anaplásico de Células Grandes/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adolescente , Adulto , Idoso , Quinase do Linfoma Anaplásico , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Proteínas Inibidoras de Apoptose , Linfoma Anaplásico de Células Grandes/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Receptores Proteína Tirosina Quinases , Análise de Sobrevida , Survivina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA